Profile data from ω / θ scans
Absorption correction: none 4171 measured reflections 2471 independent reflections 1922 reflections with
$I>2 \sigma(I)$
$h=-8 \rightarrow 8$
$k=-12 \rightarrow 13$
$l=-20 \rightarrow 20$
3 standard reflections frequency: 60 min intensity decay: 4.4%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.090$
$S=1.018$
2471 reflections
101 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0574 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.988 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.928$ e \AA^{-3}
Extinction correction: SHELXL93
Extinction coefficient: 0.0288 (16)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right)$

$\mathrm{Srl}-\mathrm{O}^{1}$	2.533 (2)	$\mathrm{Fe} 1-\mathrm{O} 4$	2.113 (2)
$\mathrm{Sr} 1-\mathrm{O} 3$	2.559 (2)	$\mathrm{Fe} 1-07$	2.199 (2)
$\mathrm{Sr} 1-\mathrm{O} 7$	2.566 (2)	$\mathrm{Pl}-\mathrm{O3}^{\prime \prime}$	1.513 (2)
$\mathrm{Srl}-\mathrm{O} 2^{\text {ii }}$	2.637 (2)	$\mathrm{Pl}-\mathrm{Ol}^{\text {i }}$	1.515 (2)
Srl - $\mathrm{O}^{\text {iii }}$	2.648 (2)	$\mathrm{Pl}-\mathrm{O} 7$	1.529 (2)
$\mathrm{Sr} 1-\mathrm{O} 1^{\text {iV }}$	2.657 (3)	$\mathrm{Pl}-\mathrm{OS}^{\text {¹1 }}$	1.605 (2)
Sri-O4	2.722 (2)	P2-04	1.523 (2)
$\mathrm{Srl}-\mathrm{O7}^{1}$	2.776 (2)	P2-O6	1.524 (2)
$\mathrm{Fe} 1-\mathrm{Ol}$	1.988 (2)	$\mathrm{P} 2-\mathrm{O} 2^{\text {'11 }}$	1.536 (2)
$\mathrm{Fe} 1-\mathrm{O} 2{ }^{\text {* }}$	2.049 (2)	P2-O5	1.604 (2)
$\mathrm{Fel}-\mathrm{Ob}^{\text {v1 }}$	2.113 (2)		
$\mathrm{O} 3^{\text {"1- }}-\mathrm{Pl}-\mathrm{Ol}^{\text {di" }}$	113.78 (13)	$\mathrm{O} 4-\mathrm{P} 2-\mathrm{O} 2^{\text {va' }}$	111.98 (12)
$\mathrm{O3}^{\text {"1 }}$-PI-07	112.94 (13)	$\mathrm{O} 6-\mathrm{P} 2-\mathrm{O} 2^{\text {¹11 }}$	111.02 (12)
$\mathrm{Ol}^{\text {vii }}-\mathrm{Pl}-\mathrm{O}^{\text {a }}$	108.35 (13)	O4-P2-O5	103.91 (12)
$\mathrm{O} 3^{\text {vi] }}-\mathrm{Pl}-\mathrm{OS}^{\text {"11 }}$	107.80 (13)	O6-P2-O5	108.02 (12)
$\mathrm{Ol}^{\text {vii }}-\mathrm{Pl}-\mathrm{OF}^{\text {¹/ }}$	105.71 (12)	$\mathrm{O} 2^{\text {¹i }}-\mathrm{P} 2-\mathrm{O} 5$	106.41 (12)
O7-P1-05 ${ }^{\text {iin }}$	107.86 (12)	$\mathrm{P} 2-\mathrm{O}-\mathrm{P} 1^{1 \times}$	127.39 (14)
O4-P2-O6	114.82(12)		
$\begin{aligned} & \text { Symmetry codes: (i) } \frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z ; \text { (ii) } \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \text { (iii) } \\ & \frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z ; \text { (iv) } x-1, y, z ;(\text { v) } x, 1+y, z ;(\text { vi) } 1+x, y, z ; \text { (vii) } \\ & \frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ; \text { (viii) } 1-x, 1-y,-z ; \text { (ix) } x-\frac{1}{2}, \frac{3}{2}-y, z-\frac{1}{2} . \end{aligned}$			

Absorption corrections were attempted (Gaussian method), but they did not improve the results of the refinement. The rather complex shape of the crystal makes a good numerical correction difficult to obtain. Thus, the results are based on observed structure factors with no absorption correction. Only about half the reflections in the $h k l$ range indicated could be measured, but all independent reflections were measured at least once.

Data collection: DIF4 (Stoe \& Cie, 1988a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1988b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: DIAMOND (Bergerhoff, 1996).

The authors thank Professor M. Leblanc (Université du Maine) for his help in data collection.

[^0]
References

Bergerhoff, G. (1996). DIAMOND. A Visual Crystal Structure Information System. University of Bonn, Germany.

Brown, I. D. (1981). Structure and Bonding in Crystals, Vol. 2, edited by M. O`Keeffe \& A. Navrotsky, pp. 1-30. New York: Academic Press.
Calvo, C. (1968). Inorg. Chem. 7, 1345-1351.
Kuznetsov, V. A. (1968). J. Crost. Growth, 3-4, 405-412.
Riou, D. \& Goreaud, M. (1990). Acta Cryst. C46, 1191-1193.
Riou, D. \& Raveau, B. (1991). Acta Cryst. C47, 1708-1709.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1988a). DIF4. Diffractometer Control Program. Version 6.2. Stoc \& Cic, Darmstadt, Germany

Stoe \& Cie (1988b). REDU4. Data Reduction Program. Version 6.2. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1999). C55, 483-485

$\mathbf{T a}_{5} \mathbf{S b}_{4}$

Sung Kwon Kang \dagger and Gordon J. Miller
Department of Chemistry, Iowa State University, Ames, IA 50011,USA. E-mail: gmiller@iastate.edu

(Received I3 July 1998; accepted 25 November I998)

Abstract

The title compound, pentatantalum tetraantimonide, was obtained as a by-product of the reaction between Ba and Sb mixed in a 1:2 molar ratio using tantalum as a reaction container. This compound adopts the $\mathrm{Ti}_{5} \mathrm{Te}_{4}$ structure type, which consists of chains of vertexsharing $\mathrm{Ta}_{6} \mathrm{Sb}_{8}$ face-capped octahedral clusters. The resulting formulation is $\mathrm{Ta}_{4} \mathrm{Ta}_{2 / 2} \mathrm{Sb}_{8 / 2}$. Distance ranges are: Ta-Ta 2.930 (1)-3.301 (1) and $\mathrm{Ta}-\mathrm{Sb} 2.775$ (2)3.074 (1) \AA; there are no bonding $\mathrm{Sb} \cdots \mathrm{Sb}$ distances. Closer inspection reveals that the Ta substructure also resembles chains cut out from bcc packing.

Comment

During investigations on the binary barium-antimony system using sealed tantalum containers for their preparation, the compound $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$ was obtained as a side product. Previously, this compound was prepared by direct reaction between the elements and characterized by X-ray powder diffraction (Boller \& Nowotny, 1964; Furuseth et al., 1965). $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$ is isostructural with tetragonal $\mathrm{Ti}_{5} \mathrm{Te}_{4}$ (Grønvold et al., 1961), which adopts the space group $14 / m$. Unit-cell parameters for $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$ have been determined to be $a=10.2357$ (14) and $c=3.5425$ (7) \AA. The shortest interatomic distances

[^1]are $\mathrm{Ta}-\mathrm{Ta} 2.930$ (1) and $\mathrm{Ta}-\mathrm{Sb} 2.775$ (2) \AA. These distances are close to the shortest distance found in elemental tantalum ($b c c, 2.86 \AA$; Mueller, 1977) and the sum of the metallic radii of Ta and Sb (Barrett et al., 1963), which is $2.88 \AA$. The closest $\mathrm{Sb} \cdots \mathrm{Sb}$ distance in this compound is $3.525 \AA$, which indicates that there is no bonding interaction between Sb atoms, as this is much longer than twice the metallic radius of Sb .

The $\mathrm{Ti}_{5} \mathrm{Te}_{4}$ structure has been discussed with respect to the condensation of $\mathrm{Ti}_{6} \mathrm{Te}_{8}$ face-capped octahedral clusters via opposite vertices, which leads to a quasiinfinite chain of composition $\mathrm{Ti}_{2 / 2} \mathrm{Ti}_{4} \mathrm{Te}_{8 / 2}=\mathrm{Ti}_{5} \mathrm{Te}_{4}$ (Simon, 1992). In $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$, as in the other examples, the octahedra are compressed by approximately 22%; the eight octahedral edges involving the apex atoms are 2.930 (1) \AA long, whereas the four edges in the waist are 3.297 (1) \AA long. This distance, within standard error, equals the shortest Ta - Ta distance found between adjacent chains of 3.301 (1) \AA. The apex Ta atoms are bonded to four Sb atoms arranged in a square-planar structure at a distance of 3.074 (1) \AA, the other Ta atoms being coordinated by a distorted square pyramid of Sb atoms; in the equatorial plane, the $\mathrm{Ta}-\mathrm{Sb}$ distances are 2.790 (1) and 2.827 (1) A, while the remaining distance to an adjacent column is 2.775 (2) \AA. This strong donoracceptor interaction between Ta atoms in the waist with Sb atoms from neighboring chains in the axial position of the local square pyramid may explain the distortion of the octahedra (Simon, 1992), but the alternative explanation uses the assumption that the shared apex Ta atoms prefer a $b c c$-type environment with eight nearestneighbor Ta atoms (Chen \& Franzen, 1972).

Fig. 1. An (001) perspective projection of $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$. Light circles are Sb atoms and dark circles are Ta atoms.

As indicated by Simon (1992), this structure type occurs for a wide range of electron counts from 44 $\left(\mathrm{Ti}_{5} \mathrm{Te}_{4}\right)$ to 50 valence electrons $\left(\mathrm{Mo}_{5} \mathrm{As}_{4}\right)$. $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$ exhibits 45 valence electrons. According to band-structure calculations of $M_{5} X_{4}$ chains (Kumar \& Heine, 1984a,b), minima in their electronic energy densities of states occur for 44-45 and 49-50 valence electrons. $\mathrm{Ta}_{5} \mathrm{Sb}_{4}$ is in good agreement with the lower values.

Experimental

The title compound was obtained as a by-product when elemental Ba [rod, Aesar (99.99%)] and Sb [powder, 100 mesh, Aesar $(99.999 \%)]$ in a $1: 2$ molar ratio were loaded into a tantalum tube (Noble-Met. Ltd, > 99.85\%, 0.375 OD) in an argon-filled glove-box, sealed in an arc melter under argon, and then heated to 1173 K for 3 d in a fused-silica jacket. The reaction container was slowly cooled to 673 K at $10 \mathrm{~K} \mathrm{~h}^{-1}$ and then quenched to room temperature. When the tantalum tube was opened in the argon-filled glove-box, thin grey needle-shaped crystals of the title compound were found in the product. Suitable single crystals were mounted in 0.2 mm thin-walled capillaries for subsequent diffraction experiments.

Crystal data

$\mathrm{Ta}_{5} \mathrm{Sb}_{4}$
$M_{r}=1391.75$
Tetragonal
I4/m
$a=10.2357(14) \AA$
$c=3.5425$ (7) \AA
$V=371.15(10) \AA^{3}$
$Z=2$
$D_{x}=12.454 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Rigaku AFC-6R diffractometer
$2 \theta-\omega$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.138, T_{\text {max }}=0.199$
655 measured reflections
314 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.065$
$S=1.062$
314 reflections
16 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+18.3209 P\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 39
reflections
$\theta=7.28-14.66^{\circ}$
$\mu=87.556 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle
$0.10 \times 0.03 \times 0.03 \mathrm{~mm}$ Grey

218 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.096$
$\theta_{\text {max }}=30.05^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 14$
$l=0 \rightarrow 4$
3 standard reflections every 150 reflections intensity decay: 0.4%
$\Delta \rho_{\text {max }}=4.49 \mathrm{e}_{\AA^{-3}}^{-3}$
$\Delta \rho_{\min }=-4.60 \mathrm{e}^{-3}$

Extinction correction: SHELXL97
Extinction coefficient: 0.00108 (8)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	$\underline{ }$	z	$U_{\text {eq }}$
Tal	0	0	0	0.0050 (4)
Ta2	0.37078 (8)	0.31212 (8)	0	0.0066 (3)
Sb3	0.29588 (13)	0.05161 (13)	0	0.0066 (4)

The crystal structure was solved by direct methods (SHELXS97; Sheldrick, 1990). The space groups $I 4, I \overline{4}$ and I4/m were allowed based upon the observed systematic absences. The space group $I 4 / m$ was selected for initial refinements, and this group was confirmed by comparing the refinement results using the other two groups, which were identical with $I 4 / m$ within three s.u.'s. The Ta and Sb atoms were readily located from the E map and refined with anisotropic displacement parameters. The reflection (110) with $2 \theta=5.62^{\circ}$ was omitted from the refinement due to the close proximity and possible interference from the beam stop of the X-ray diffractometer. The largest residuals in the final difference map were $4.49 \mathrm{e}^{\AA} \AA^{-3}$ at a distance of $1.82 \AA$ from Tal and $-4.60 \mathrm{e}^{\AA^{-3}}$ on Tal.

Data collection: MSCIAFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1990). Program(s) used to solve structure: SHELXS97. Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

This work was supported by the 'Korean Research Foundation - Support for Faculty Research Abroad', and partially supported by the National Science Foundation (NSF DMR 96-27161).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1226). Services for accessing these data are described at the back of the journal.

References

Barrett, C. S., Cucka, P. \& Haefner, K. (1963). Acta Cryst. 16, 451453.

Boller, H. \& Nowotny, H. (1964). Monatsh. 95, 1272-1282.
Chen, H.-Y. \& Franzen, H. F. (1972). Natl Bur. Stand. Spec. Publ. 364, 651-652.
Furuseth, S., Selte, K. \& Kjekshus, A. (1965). Acta Chem. Scand. 19, 95-106.
Grønvold, F., Kjekshus, A. \& Raaum, F. (1961). Acta Cryst. 14, 930934.

Kumar, V. \& Heine, V. (1984a). Inorg. Chem. 23, 1498-1499.
Kumar, V. \& Heine, V. (1984b). J. Phys. F, 14, 365-379.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1990). TEXSAN. Single Crystal Structure Analysis Software. Version 6.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Mueller, M. H. (1977). Scr. Metall. 11, 693-693.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Simon, A. (1992). In Inorganic Solids, edited by A. K. Cheetham \& P. Day, p. 112. New York: Oxford University Press.

Acta Cryst. (1999). C55, 485-487

Strontium tetramolybdate dihydrate, $\mathbf{S r M o}_{4} \mathrm{O}_{13} \cdot \mathbf{2 H} \mathbf{H}$

William T. A. Harrison \dagger

Department of Chemistry, University of Western Australia, Nedlands WA 6907, Australia. E-mail: wtah@chem.uwa.edu.au
(Received 6 August 1998; accepted 19 October 1998)

Abstract

$\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ contains infinite sheets of distorted MoO_{6} and MoO_{5} moieties sharing edges and vertices. Inter-layer nine-coordinate Sr^{2+} cations $\left[d_{\mathrm{av}}(\mathrm{Sr}-\mathrm{O})=\right.$ 2.678 (3) \AA] and water molecules complete the structure, which is isostructural with that of $\mathrm{BaMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Comment

$\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Fig. 1) is confirmed to be isostructural with $\mathrm{BaMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (Harrison et al., 1995). The polyhedral connectivity of the Mo / O groups results in buckled anionic sheets of stoichiometry $\left[\mathrm{Mo}_{4} \mathrm{O}_{13}\right]^{2-}$, which propagate normal to [100]. Both vertex-sharing and edge-sharing of the MoO_{6} and MoO_{5} groups occurs in this phase, which has essentially the same sheet structure as $\mathrm{BaMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Fig. 1. Fragment of the $\mathrm{SrMo}_{4} \mathrm{O}_{13} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ structure, drawn with 50% displacement ellipsoids. The very long Mo2-O11 ${ }^{\text { }}$ bond is indicated by a thin line (see text). Symmetry codes are as in Table 1.

The Srl atom is nine-coordinate to O atoms $\left[d_{\mathrm{av}}(\mathrm{Srl}-\mathrm{O})=2.678(3) \AA\right]$ in irregular coordination (Fig. 2). Four of these neighbours are the O atoms of

[^2]
[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1225). Services for accessing these data are described at the back of the journal.

[^1]: \dagger Permanent address: Department of Chemistry, Chungnam National University, Taejon 305-764, Korea.

[^2]: \dagger Present address: Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, Scotland.

